Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations
نویسندگان
چکیده
In this rst installment of a two-part paper, the underlying theory for an algorithm that computes the Voronoi diagram and medial axis of a planar domain bounded by free-form (polynomial or rational) curve segments is presented. An incremental approach to computing the Voronoi diagram is used, wherein a single boundary segment is added to an existing boundary-segment set at each step. The introduction of each new segment entails modifying the Voronoi regions of the existing boundary segments, and constructing the Voronoi region of the new segment. We accomplish this by (i) computing the bisector of the new segment with each of the current boundary segments; (ii) updating the Voronoi regions of the current boundary segments by partitioning them with these bisectors; and (iii) constructing the Voronoi region of the new segment as a union of regions obtained from the partitioning in (ii). When all boundary segments are included, and their Voronoi regions have been constructed, the Voronoi diagram of the boundary is obtained as the union of the Voronoi polygons for each boundary segment. To construct the medial axis of a planar domain, we rst compute the Voronoi diagram of its boundary. The medial axis is then obtained from the Voronoi diagram by (i) removing certain edges of the Voronoi diagram that do not belong to the medial axis, and (ii) adding certain edges that do belong to the medial axis but are absent from the Voronoi diagram; unambiguous characterizations for edges in both these categories are given. Details of algorithms based on this theory are deferred to the second installment of this two-part paper. c © 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
Voronoi diagram and medial axis algorithm for planar domains with curved boundaries — II: Detailed algorithm description
Details of algorithms to construct the Voronoi diagrams and medial axes of planars domain bounded by free-form (polynomial or rational) curve segments are presented, based on theoretical foundations given in the rst installment Ramamurthy and Farouki, J. Comput. Appl. Math. (1999) 102 119–141 of this two-part paper. In particular, we focus on key topological and computational issues that arise ...
متن کاملConstructing medial axis transform of planar domains with curved boundaries
The paper describes an algorithm for generating an approximation of the medial axis transform (MAT) for planar objects with free form boundaries. The algorithm generates the MAT by a tracing technique that marches along the object boundary rather than the bisectors of the boundary entities. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteri...
متن کاملEfficient Voronoi diagram construction for planar freeform spiral curves
We present a real-time algorithm for computing the Voronoi diagram of planar freeform piecewise-spiral curves. The efficiency and robustness of our algorithm is based on a simple topological structure of Voronoi cells for spirals. Using a Möbius transformation, we provide an efficient search for maximal disks. The correct topology of Voronoi diagram is computed by sampling maximal disks systema...
متن کاملA Voronoi based Labeling Approach to Curve Reconstruction and Medial Axis Approximation
In this paper, we present a Voronoi based algorithm for closed curve reconstruction and medial axis approximation from planar points. In principle, the algorithm estimates one of the poles (farthest Voronoi vertices of a Voronoi cell) and hence the normals at each sample point by drawing an analogy between a residential water distribution system and Voronoi diagram of input samples. The algorit...
متن کاملStraight Skeletons for General Polygonal
A novel type of skeleton for general polygonal gures, the straight skeleton S(G) of a planar straight line graph G, is introduced and discussed. Exact bounds on the size of S(G) are derived. The straight line structure of S(G) and its lower combinatorial complexity may make S(G) preferable to the widely used Voronoi diagram (or medial axis) of G in several applications. We explain why S(G) has ...
متن کامل